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We present a new measurement of the cosmic-ray positron fraction e+/(e + + e-) obtained from the
first balloon flight of the High Energy Antimatter Telescope (HEAT). Using a magnet spectrometer
combined with a transition radiation detector, an electromagnetic calorimeter, and time-of-flight counters
we have achieved a high degree of background rejection. Our results do not indicate a major
contribution to the positron flux from primary sources. In particular, we see no evidence for the
significant rise in the positron fraction at energies above _ 10 GeV previously reported.

PACS numbers: 98.70.Sa, 14.80.Ly

Electrons account for 1% or less of the total cosmic-ray
flux, but their low mass and lack of hadronic interaction

makes them subject to processes different from those
governing the nuclear cosmic rays during acceleration
and propagation through the Galaxy. Secondary e -+ are

produced in about equal proportion subsequent to nuclear
interactions of primary cosmic rays in interstellar space.
In addition, there must be a substantial contribution of
e- from primary acceleration sites since the measured
positron fraction in the 1 to 10 GeV range [1,2] is less
than 10%. It is not understood whether these sites are

the same as those generating the nuclear cosmic rays,
nor is it known why primary electrons are so much less
abundant than nuclei of comparable energy. However,
the flux of positrons in this energy range seems to be
consistent with an entirely secondary origin [3]. At higher
energies, the leaky box model of cosmic-ray propagation
predicts a slow decline of the secondary positron fraction
while several experiments [4-8] reported a surprising rise
in the positron fraction above 10 GeV. These results have
motivated a variety of interpretations [9] involving either
a depletion of the primary electron source at high energy
or new sources of e -+ pairs, such as pair production near
compact objects [10] or the annihilation of hypothetical
dark matter particles [11]. The available data do not
permit definitive conclusions among these possibilities.

The High Energy Antimatter Telescope (HEAT) e ±
instrument, shown schematically in Fig. 1, is .designed
to extend e +- measurements to higher energies with

good statistical significance and with multiple techniques
for rejecting the large hadron.backgroun.d. :.It consists.
of a two-coil superconducting magnet with a field of
_1 T at the center, a drift tube hodoscope (DTH), a
transition radiation detector (TRD), an electromagnetic

shower counter (EC), and a time-of-flight (TOF) system.
HEAT was flown on 3-5 May, 1994 from Ft. Sumner,
New Mexico, and collected data for 29.5 h at float
altitudes of 3.8-7.4 g/cm 2 of residual atmosphere.

The DTH measures the rigidity, R, and the sign of

the particle charge. It contains 479 drift tubes of 2.5 cm
diameter filled with CO2:hexane (96:4), 18 layers in the

bending plane and 8 layers in the nonbending plane.
Timing signals are measured and converted into "im-

pact parameters" (the closest distance between the wire
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FIG. 1. Schematic cross section of the HEAT-e-* spec-
trometer.
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and the particle trajectory). For impact parameters r >
0.20 cm, the single tube resolution is typically o-_-

75 /zm. Rigidities are determined by finding the best-

fit track through the known magnetic field. The maxi-
mum detectable rigidity (MDR) distribution has a mean of

170 GV permitting reliable measurements up to 50 GeV.

The TOF system is designed to provide effective

up/down discrimination and good charge resolution to

separate singly charged particles from He nuclei. It de-
termines the direction of particle travel and the particle

velocity between the TOF scintillator and the EC with

a timing accuracy of o- = 0.75 ns. The TOF scintillator
also determines the charge of each particle with a resolu-

tion o- = 0.1 l e. The probability of a He nucleus being

misidentified by the TOF as a singly charged particle is

below 10 -3 and the probability that it might survive the

subsequent e +--selections is negligible.
The TRD is comprised of six radiator and multiwire pro-

portional chamber (MWPC) pairs. The radiators consist of
plastic fiber blankets [12], and the MWPCs are filled with

a Xe:CH4 (70:30) mixture. Transition radiation signals

are expected for e -+but not for hadrons. Total charge sig-
nals are read from cathode strips, and clusters of charge are

identified from a fast readout of sense wire signals in 25 ns

time slices. A likelihood technique is used to analyze the

total charge signals, and the time slice data are interpreted

using a neural network technique. The response functions

for different particles in each TRD layer are obtained in
accelerator calibrations and confirmed with the flight data

using an iterative procedure. The neural network is trained

with a sample of e +--candidates, and its output value, rang-

ing from 0 to 1, identifies e- events clustering near unity.
The EC identifies electrons as particles that deposit a

large energy with a pulse height profile consistent with
the development of an electromagnetic shower. We use

10 layers of Pb and plastic scintillator with 0.9 radiation

length (r.1.) of Pb per layer. To increase the dynamic
range, each photomultiplier tube (PMT) signal is processed

through two pulse height analysis chains with different

gains, and care is taken that the PMT signals stay well be-
low saturation. The signals are converted into an estimate

of the primary energy, E, using a covariance analysis based
on the results of GEANT [13] simulations and of accelerator

calibrations. The resulting energy resolution is or -----7%-

11%, varying slightly with zenith angle. It is roughly in-

dependent of energy due to fluctuations in the amount of2
energy exiting the back of the EC. Two parameters, XEC
for the shower fit and Xstaa, the shower start depth, are used

to distinguish electromagnetic showers from the hadronic

background.
Data are telemetered to a ground station for recording

and on-line display. The event trigger is formed from the

TOF and EC signals. Normally the EC threshold is set
to exclude noninteracting particles, but a prescaler is also

used to accept a fraction (--2%) of penetrating protons.
A subsequent slow trigger requires a minimum signal in

the DTH before the event is accepted. The acceptance for

particles satisfying the trigger is 320 cm 2 sr.
To obtain a sample of clean e -+ events the data are

subjected to two categories of selections shown in Table I.
The first category extracts events .with a single downward-

going particle having a unit charge and a well resolved
momentum. The requirement of a single and consistent
track in both the TRD and the DTH is particularly

important in rejecting events in which interactions occur
within the instrument.

The second category selects for e -+ by combining the

hadron rejection afforded by the TRD electron likelihood

analysis, the TRD time slice data, and the EC shower

shape and starting depth. The proton rejection factor
at an electron efficiency of 90% is 200 for the TRD

and >_100 for the EC. The final selection of events

is based on the agreement between E and momentum

p. The ratio E/p is expected to peak sharply at unity
in the case of electrons, and to exhibit a much broader

distribution peaking at an E/p value of less than unity
in the case of interacting hadrons. The E/p ratio

provides additional hadron rejection and an estimate of the
residual background in the selected data. Figure 2 shows

a histogram of E/p before and after the e +- selections

are applied. The solid curve represents all data having

Et > 4.5 GeV before the e -+ selections are applied. (Et

is the e +- energy corrected to the top of the atmosphere;
see below.) For positive E/p, the distribution is heavily

contaminated by interacting protons and has a different

shape than that for negative E/p data, which contains

mostly electrons. The hatched region shows the data

TABLE I. Data selections. Int OTais the intercept of the DTH
track, extrapolated into the TRD, and Inta-_ is the intercept of
the TRD track. The DTH track X 2 is based on the deviation
of the measured and calculated track points. MDR is the
maximum detectable rigidity of the spectrometer for a given
magnetic field integral, track point measurement error, and
number of points used in the track fit. The TRD maximum
likelihood (M.L.), the time slice neural net output, and the EC
shower shape are described in the text.

Selection description Selection range

TRD, DTH track match
Charge = 1

Velocity = c
DTH track X 2

DTH rigidity error

Group 1

IIntDTH

Group 2

TRD e + M.L.
# TRD chambers hit

TRD time slice
EC shower shape
EC shower start

Energy, momentum selection
IE/pl

- IntTRD[ < 24 cm
0.77e < Z < 1.5e

0.5</3 <2.0
X 2 < 10.0

MDR/IRI > 4

log(M.L.) > 2
NXRO = 6

Neural net output > 0.5
X_c < 1.8

Xstaa < 0.8 r.l.
E > 3 GeV, Ipl > 2.5 GeV/c

0.7 < IE/pl < 3.0
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FIG. 2. The ratio of energy from the EC measurement to
particle momentum from the magnetic spectrometer plotted on
both linear and log scales for clarity. The solid curve is for
data with group 1 selections applied, and with E > 4.5 GeV.
The dashed curve is for e -+ from a Monte Carlo calculation.
The measured data are shown hatched with all selection criteria
except [E/p[ > 0.7. The cross-hatched region is the final
selected data sample.

after the e +- selections are applied. The dashed curve is

the result of a Monte Carlo calculation of the response
of the EC and DTH detectors to electrons, which takes

into account bremsstrahlung by e -+ in the instrument and

overlying material. Bremsstrahlung photons deposit their
energy in the EC but result in a lower momentum in the

DTH, leading to a tail for large IE/pl. The agreement

between the shapes of the expected and observed E/p
distributions is quite good, indicating that the instrumental

response of the EC and DTH detectors is well understood.

The remaining background in the final data set is

small and occurs primarily at low [E/pl values (see

Fig. 2) as would be expected for a residual hadronic
background. The data used in the determination of the

positron fraction are required to satisfy the condition

0.7 < IE/pl < 3.0 (cross-hatched). Because the energy
and momentum measurements have been verified to be

charge symmetric, this selection does not introduce a

bias into the measured positron fraction. A worst case

estimate of the proton contamination in the region of
accepted positron candidates would indicate a background

contribution of 10% to the positron flux. However,

taking the shape of the distribution of interacting hadrons

properly into account, we conclude that the remaining

background in the positron sample is only 1%. This
background is subtracted to obtain the final result.

Including the hadron rejection obtained with the EC

trigger, an overall background rejection of better than
105 is achieved by the data selections described above.

We emphasize that these selections are not biased by
charge sign dependent effects. The background distri-

bution shown in Fig. 2 does not reflect the full rejection
power of the instrument since it does not include events

rejected by the trigger or events with Et < 4.5 GeV. The

total electron efficiency obtained with this analysis is

-30%. Roughly 50% of all e -+ events are rejected by the

requirement of track consistency in the TRD and DTH.
The remaining inefficiency, reflected in the distributions

shown in Fig. 2, results from the e -+ selections.

In Table II we show the results of this analysis. The

energy of each event, Et, is obtained after correcting the
measured energy, E, by --5%-10% to account for radia-

tive losses in the atmosphere. A Monte Carlo program
[13] is used to determine the fraction of observed e -+ which

are generated by primary cosmic rays in the atmosphere.

The atmospheric correction calculation has been verified

by measurements of the rate of growth of the secondary
e + and e- intensity as a function of atmospheric depth.

The calculated background is subtracted from the observed

number of events to produce the corrected counts. The cal-

culation includes geomagnetic cutoff rigidities and penum-

bral effects [14] and is normalized to published spectra of

primary protons and electrons [15-18]. Uncertainties in

these spectra lead to a systematic error in the atmospheric

correction of about 30%, corresponding to a systematic

shift of approximately _+0.01 in the reported positron frac-

tions for all energy intervals. Table II reports statisti-

cal errors corresponding to 68.3% Bayesian confidence
intervals.

The positron fraction vs energy is plotted in Fig. 3 along
with a number of previous measurements. Also shown are

calculations from the leaky box model [3]. The dark matter

annihilation model of Ref. [11] for weakly interacting mas-

sive particle masses of 90 and 120 GeV is superimposed

upon the leaky box curve. The rise in the positron frac-

tion seen previously is not indicated by our data. This may

be due to the fact that none of the previous experiments

employed all of the hadron rejection techniques available

with the HEAT-e -+ experiment. The energy dependence

TABLE II. Compilation of e -+results.

Energy (E,) e + e- e+/(e + + e-)
Et (GeV) (GeV) Meas. Corr. Meas. Corr. Corrected

4.5-6.0 5.22 113 75.6 1091 1046.0 0.067 ÷ 0.010-- 0.009

0.009
6.0-8.9 7.17 107 75.9 1068 1030.0 0.069 ± 0.009
8.9-14.8 11.0 51 33.7 582 562.0 0.057 ÷ 0.013

-- 0.011

14.8-26.5 18.7 19 10.3 232 223.5 0.044 + 0.019
-- 0.017

26.5-50.0 34.0 3 0.87 42 40.1 0.021 ÷ 0.045
-- 0.021
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FIG. 3. A comparison of the positron fraction e+/(e + + e-) as measured in this experiment along with previous measurements
and theoretical models. Errors in the positron fraction are statistical.

of the positron fraction reported here appears to be con-

sistent with the prediction of a standard leaky box model

which assumes that pion decay is the dominant source of

positrons in the galactic cosmic radiation. While numeri-

cally our positron fraction appears to be slightly higher

than the prediction, we must bear in mind that the predic-

tion is subject to normalization errors and uncertainties in

the choice of model parameters. Further analysis and mea-

surements with improved statistics and extension to higher

energies are required to resolve these issues and to inves-

tigate the dark matter annihilation scenario.
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Final Report for NASA Grant NAGW-4737

The Pennsylvania State University

Prof. James J. Beatty, Principal Investigator

This grant supported our work on the High Energy Antimatter Telescope (HEAT)

balloon experiment. The HEAT payload is designed to perform a series of experiments

focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the

HEAT-e+ configuration have taken place.

The transfer of project support from Washington University took place during the

late spring of 1995, when the P.I. joined the Penn State faculty. In addition to the

transferred funds, additional support was granted in late 1995 to bridge the transition

from Headquarters administration of balloon project grants to their administration by

Wallops Flight Facility personnel. The project is continuing under support via a new

instrument administered by Wallops.

During the period of this grant major accomplishments include the following:

• Publication of the first results of the 1994 HEAT-e+ flight in Physical Review

Letters. A copy of this publication is attached.

Successful reflight of the HEAT- e+ payload from Lynn Lake in August 1995.

The Penn State P.I. led the campaign. A preliminary report of the results of this flight

was delivered at the American Physical Society 1996 spring meeting, and anAp. J.

Letter with results from this flight is scheduled to appear in 1997.

Repair and refurbishment of the elements of the HEAT payload damaged

during the landing following the 1995 flight. Because of a low cloud deck, the

chase pilot could not verify impact was unable to separate the chute from the payload

until the experiment had 'water-skied' across a lake and been dragged over several

hundred feet of boulder-strewn muskeg. Damage to the internal elements of the

payload was remarkably light, but all items have been checked and refurbished as

needed.

Upgrade of the ground support equipment for future flights of the HEAT

payload. This includes replacement of the main ground power supply for the

instrument, acquisition of electronic loads to facilitate power supply testing and

maintenance, buying a uninterruptable power supply capable of powering the

instrument and magnet supplies, purchase of an ATA rack case to ease transport of

key items to the field, and replacement of key items of test equipment.

We are now continuing the project under support through Wallops, and expect another

HEAT flight to take place in 1998.


